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Abstract

Hyperspectral Fourier transform infrared images have been obtained from a neoprene
sample aged in air at elevated temperatures.  The massive amount of spectra available
from this heterogeneous sample provides the opportunity to perform quantitative analysis
of the spectral data without the need for calibration standards.  Multivariate curve
resolution (MCR) methods with non-negativity constraints applied to the iterative
alternating least squares analysis of the spectral data has been shown to achieve the goal
of quantitative image analysis without the use of standards.  However, the pure-
component spectra and the relative concentration maps were heavily contaminated by the
presence of system artifacts in the spectral data.  We have demonstrated that the
detrimental effects of these artifacts can be minimized by adding an estimate of the error
covariance structure of the spectral image data to the MCR algorithm.  The estimate is
added by augmenting the concentration and pure-component spectra matrices with scores
and eigenvectors obtained from the mean-centered repeat image differences of the
sample.  The implementation of augmentation is accomplished by employing efficient
equality constraints on the MCR analysis.  Augmentation with the scores from the repeat
images is found to primarily improve the pure-component spectral estimates while
augmentation with the corresponding eigenvectors primarily improves the concentration
maps.  Augmentation with both scores and eigenvectors yielded the best result by
generating less noisy pure-component spectral estimates and relative concentration maps
that were largely free from a striping artifact that is present due to system errors in the
FT-IR images.  The MCR methods presented are general and can also be applied
productively to non-image spectral data.
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INTRODUCTION
The recent availability of commercial hyperspectral imaging Fourier transform infrared
(FT-IR) spectrometers[1, 2] has increased the need for improved methods of analyses of
the image data.  Although most applications of this new technology have involved
qualitative analysis of the image data, obtaining quantitative information from the
hyperspectral image data is highly desirable.  Any developments in the quantitative
analysis of the FT-IR image data would also have application to the analysis of
multispectral and hyperspectral image data obtained from remote sensors such as satellite
or airborne hyperspectral imaging sensors.  One opportunity available from the massive
data obtained in a single hyperspectral image is the possibility of performing quantitative
analysis of the image data without the use of calibration standards.  This opportunity has
recently been realized in the analysis of Raman hyperspectral images using multivariate
curve resolution algorithms that employ constrained alternating least squares iterative
methods to generate estimates of the pure-component spectra of species present in the
image data and to obtain relative concentration maps of those chemical species.[3, 4]

We have found that the quantitative analysis of hyperspectral image data collected from
FT-IR imaging systems that employ focal plane array (FPA) detectors can be greatly
hampered by the presence of system artifacts in the spectral and image data.  Methods are
required to eliminate the detrimental effects of these systematic artifacts if they cannot be
eliminated experimentally.  We have found that the characteristics of the systematic
artifacts can be captured in the error covariance structure of the data estimated from
repeat spectral image differences.  By coupling new generalized augmented classical least
squares (ACLS) methods [5] with improved multivariate curve resolution techniques[6-
11] and estimates of the error covariance structure of the data, we have been able to
greatly minimize the detrimental effects of the systematic artifacts present in
hyperspectral imaging FT-IR systems.  Thus, improved pure-component spectral
estimates and relative concentration maps from the image spectra have been realized
without the requirement for calibration standards.  These new methods will be described
and demonstrated using an example of an FT-IR spectral image obtained from a sample
of neoprene thermally aged in air at elevated temperatures.

EXPERIMENTAL
The sample investigated involved a sample of neoprene rubber.  In order to obtain
adequate signal to noise in the FT-IR image data, the neoprene sample did not contain the
normal carbon filler found in many neoprene rubbers.  The sample that was used to
illustrate the methods described in this paper was obtained from a 2 mm x 4 mm x 4 mm
(?) block of neoprene that was aged for 6 days in an air furnace held at a temperature of
140 °C.  The sample was then potted in epoxy and the center of the sample was cut with a
microtome to an approximate thickness of 15 µm.  However, independent estimates of
the sample thickness as a function of position on the sample indicated that the thickness
varied by a factor of greater than three across the sample.



6

The spectrometer used in this study was a BioRad Stingray step-scan FT-IR imaging
spectrometer equipped with a mercury-cadmium-telluride (MCT) FPA detector that had
4096 (64 x 64) detector elements.  The sample was placed in the macro sampling
compartment that provided a 4 mm x 4 mm transmission image to be obtained of the thin
2 mm x 4 mm aged neoprene sample.  The sample was pressed flat onto a KBr window
for support.  Background single-beam images were obtained from a clear region of the
KBr window next to the neoprene sample.  Sample single-beam transmission image
spectra were then obtained of the neoprene sample.  The spectra were collected at a
nominal spectral resolution of 16 cm-1 using a step rate of 2.5 steps/sec and co-adding 64
images at each step of the interferometer.  Data collection time was approximately 5
minutes for each spectral single-beam image.  Three image spectra were obtained in rapid
succession of the KBr window background before moving the sample into the beam.
Three image spectra were then obtained from the neoprene sample without moving the
sample.  Two of these repeat image spectra were used to obtain an estimate of the error
covariance structure of the data.

Small numbers of spectra from each image were clear outliers and were removed from
the analysis.  These outliers generally exhibited spikes or steps in the raw interferograms.
The sample images were trimmed to remove all pixels representing just the KBr window
and mixed pixels at the extreme boundaries of the sample that contained sample and KBr
window.  Only pixels present in all single-beam images were retained for final analysis.
The sample spectra were ratioed to backgrounds and converted to absorbance.  Large,
relatively complex baseline variations are present in these spectra.  The presence of these
baseline variations complicated attempts to extract pure-component spectra.  Therefore,
the spectra were preprocessed by isolating the spectral features of the sample and
performing a separate linear baseline correction under each spectral band for each
spectrum in the image.

Since the sample thickness was not uniform over the sample area, pathlength corrections
to the data were required to obtain meaningful concentration maps of the various
components across the sample.  In order to perform pathlength corrections without direct
measurements of the sample thickness, we identified a spectral band that was most
representative of sample pathlength.  This band was selected among the six baseline-
corrected bands by performing a principal components analysis (PCA) [12] on each
spectral band and examining the results carefully.  As explained in another report, [13]
necessary conditions for a spectral band to be representative of sample pathlength are that
the band be present in all pixels of the image, that it has a consistent spectral shape in all
pixels, and that only multiplicative changes are present in the band.  Spectral bands that
fulfill these conditions of only a multiplicative change will have the first PCA
eigenvector represent nearly all the variance, and the first eigenvector will have the same
shape as the average spectrum of the selected band.  Of the six bands identified in the
neoprene sample, the 1440 cm-1 band most nearly followed these criteria and was,
therefore, selected as representing sample pathlength.  Relative pathlength for each pixel
was determined by assigning a relative pathlength of one to the average spectrum of the
1440 cm-1 band and using the average spectrum in a classical least squares (CLS) [14]
prediction of all sample image spectra.  The CLS analysis also included a simultaneous
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fit of linear baseline components to the band.  Relative pathlengths varied from 0.13 to
2.5.  The thinnest pathlengths are at the edges of the sample.  Because the spectra
contained artifact from the system, the spectra were not scaled for pathlength since this
process could serve to increase the variance of the artifact in the image.  Rather, the MCR
was performed on the uncorrected spectra, and the estimated concentrations were
corrected for relative pathlength variations.

The spectral data were collected with the use of the Bio-Rad Win-IR Pro software that
came with the Stingray spectrometer.  However, spectral analyses were performed using
Matlab 6.1 code primarily written at Sandia National Laboratories.  Matlab code for the
SIMPLISMA algorithm was taken from Windig et al. [15]

THEORY
Since the primary goal of our analysis is to obtain the pure-component spectra and
concentration maps of each component in the image, we must have a method of
extracting this information directly from the spectral data since standards are not
available for these samples.  Andrew et al.[3, 4] have presented methods to accomplish
the goal of quantitative analysis without standards using Raman hyperspectral image
data.  They employed an MCR algorithm that used constrained alternating least squares
methods in an iterative analysis.  The constraints applied involved non-negativity of the
concentrations and the pure-component spectra since real concentrations and spectra will
consist of all positive values.  These constraints serve to limit the range of possible
solutions in the analysis.  In our analysis, we use not only non-negativity constraints but
also equality constraints as outlined below to further limit the possible solutions and to
minimize the detrimental effects of the system artifacts on the analyses.

The MCR methods require a starting point for the pure spectra and/or their corresponding
concentrations.  Although random numbers can be used as starting points, we chose to
use the pure component spectra obtained from the SIMPISMA algorithm[15] as starting
points.  These pure spectra are generated by finding and extracting the purest spectral
bands in the spectral data sets one at a time.  From these purest pixels, often reasonable
initial estimates of the pure-component spectra can be obtained.

Initially MCR was performed starting with the SIMPLISMA estimated pure-component
spectra using only non-negativity constraints.  The constrained alternating least squares
algorithm used was a modification of the fast non-negative least squares algorithm from
Bro.[6]  Changes to Bro’s algorithm were made to speed the convergence of the MCR
analysis.  Unfortunately, it became obvious that the spectral data were heavily
contaminated by systematic errors that severely degraded the quality of the both the pure-
component spectra and the concentration maps generated from the MCR analysis.  The
source of the systematic errors is thought to be related to systematic readout problems
from the FPA detector.  Independent of their source, the result is the presence of large
correlated errors in the spectral domain and a banding artifact in the concentration maps.
All the standard implementations of the MCR algorithms assume that the spectral errors
are random, of constant variance and independent (i.e., uncorrelated).  Unfortunately, all
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these assumptions are violated in our FT-IR image data.  In order to correct for the error
structure in our MCR analysis, we could employ generalized least squares method that
weights the analysis with an estimate of the error covariance structure in the data.
However, the generalized least squares algorithms tend to be very slow and are not
currently practical for the iterative MCR algorithms that are required for these large data
sets.  Therefore, we take a different approach that is currently practical.  Our generalized
augmented least squares (ACLS) methods create the opportunity to correct the MCR
analysis for the presence of non-constant and correlated spectral errors in the data.
However, an estimate of the error covariance structure of the spectral image data is still
required.  This estimate can be obtained from the repeat image spectral differences of the
sample.  If the sample does not move and does not change over time, then any changes in
the image spectra at a given pixel are related to systematic changes in the system
response as well as random noise.

In the following, vectors are represented as bold lower-case letters, matrices as bold
upper-case letters, and scalars are in italics.  Vectors are presented as columns with row
vectors and transposed matrices represented by a superscript T.  A superscript -1
indicates a matrix inversion and a superscript + represents the pseudoinverse of a matrix.
The ACLS method is based on the standard linear additive model (Beer’s law for
absorbance spectra) given in Eq. 1.

A = CK + EA (1)
where A is the n × p spectral matrix of the absorbance spectra from the n pixels at p
spectral frequencies, C is the n × m matrix of the m component concentrations, K is the m
× p matrix of pure-component spectra, and EA is the n × p matrix of spectral errors.
Generally EA is assumed to consist of identically distributed uncorrelated errors of zero
mean.  However, instrument drift, system artifacts, and a variety of possible errors that
occur in collecting the interferogram will generate correlated error structure.  The
conversion to absorbance also has the effect of generating errors with non-uniform error
variance.  The error covariance structure of EA has often been estimated in remote
sensing applications with hyperspectral images with a shift difference generated from a
single hyperspectral image.  This shift difference assumes that the signal between pixels
is slowly varying and therefore the spectral difference between adjacent pixels is
representative of noise.  The shift difference must be used if direct repeat image spectra
cannot be obtained, for example in the case of a moving detector in remote sensing
applications.  However, in the laboratory, repeat image spectra can be obtained, and the
difference between these images can be used to obtain an estimate of the error covariance
structure of EA.  Since errors in our image data are correlated, a PCA analysis of EA can
serve to separate the correlated errors from the random errors.  Thus, Eq. 1 can be
expanded as:

A = CK + TP + E (2)
where TP is the product of scores and eigenvectors from the PCA of EA for the r scores
and eigenvectors that represent the significant correlated errors contained in EA.  The
number of eigenvectors was selected based on a visual examination of the corresponding
score images.  Score images with nonrandom patterns were retained.  E then contains
primarily the random errors that are expected in any least squares analysis.  We wish to
estimate C and K without the detrimental influence of T and P that can contaminate the
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concentration and pure-component spectral estimates.  We can accomplish this goal by
augmenting either C with T or K with P or both.  By augmenting columns of C with
selected columns from T, we force the least squares estimate of K to ignore any pattern
in the image that has the same spatial distributions as any give set of column scores in the
T vectors that are used to augment C.  By augmenting the rows of K with selected rows
from P, we require that the least squares estimate of C ignore any spectral shape
contained in any given row eigenvector of P vectors that are used to augment K.  The
corresponding least squares calibration and prediction equations that are part of the
alternating least squares MCR procedure are

ACACCCK +− == ~~)~~(~̂ T1T (3)
+− == KAKKKAC ~̂)~̂~̂(~̂~̂ 1TT (4)

respectively, where the ~ symbol represents augmented matrices and the ^ symbol
indicates least squares estimated matrices.  In practice, the MCR method implements the
augmentation by using equality constraints to force the estimates of K and C to ignore
sources of spectral and spatial variation that are contained in the augmented C and K
matrices.  A recent publication from our group describes several implementations of the
equality constraints that are used in the constrained MCR analyses of the spectral images.
We have the option of augmenting with either scores or eigenvectors or both.  All three
options are presented in this paper to identify the best procedure to use with these
example data.

RESULTS AND DISCUSSION
A visible video image of the approximate portion of the aged neoprene sample imaged by
the FT-IR spectrometer is displayed in Fig. 1.  A slight darkening from the center to the
edge of the sample is the only indication in the visible image of the degradation of the
sample due to the aging.  The 1269 spectra from image pixels representing the sample are
presented in Fig. 2.  Note that there are significant complex baseline variations present in
these data.  The spectra that were subjected to linear baseline correction for each of the
six significant spectral bands of neoprene are presented in Fig. 3.  The preprocessed
spectra in Fig. 3 were subjected to MCR analysis.
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Figure 1.  Video image of the thin neoprene sample aged for 6 days in air at 140° C.

 

Figure 2.  Spectra of neoprene pixels from spectral image of the neoprene sample.
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Figure 3. Spectra of neoprene bands from spectral image of the sample after removing a
linear baseline from each of the 6 neoprene related spectral bands.

As mentioned in the Experimental Section, systematic artifacts were present in the FT-IR
spectral image data.  These artifacts were not always readily observable in the raw
interferograms, single-beam spectra, or absorbance spectra.  However, a PCA analysis of
the spectral image data revealed the presence of the artifact as a systematic striped or
banded pattern in the score images from the PCA analysis.  As indicated in Fig. 4, this
striped pattern was apparent in the PCA scores of interferograms, single-beams, and
absorbance spectra obtained from the spectra of different sample or background images.
The relative magnitude of the artifact varied considerably between various image data
sets as evidenced by how many eigenvectors were generated before the artifact became
noticeable.  The data in Fig. 4 illustrates collected image data where the presence of the
artifact varied from very small to significant as indicated by the fact that the striping
artifact first becomes visible in factor 2, 5, or 10 depending on the image.  In order to
demonstrate the value of the ACLS methods applied to the MCR analysis, we choose as
an example a spectral image where the artifact was a significant portion of the data.

Not only is the artifact clearly present in the PCA score images, it is also present in the
spectral data.  The systematic error (noise) can be observed in Fig. 5 that shows the
mean-centered difference spectra between repeat images of the aged neoprene sample.
Clearly, the noise in the difference spectra in Fig. 5 is not uniform.  In fact, as expected
by theory, the noise is higher in those regions where the absorbances are larger.  Thus,
the spectral noise is higher where the neoprene sample absorbs the IR beam.  What is not
clear from Fig 5 is that the noise in the sample is also correlated between spectral
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frequencies.  Thus, if the error is high at frequency p, it tends to be high at surrounding
frequencies.  The fact that the noise is high in broad spectral regions is not necessarily an
indication of correlated error; it could simply be an indication that the noise is higher in
broad spectral regions but uncorrelated between frequencies.  The non-uniform and
correlated nature of the noise in the spectral images can be best be observed by forming
the error covariance matrix from the mean-centered repeat image spectral differences.
This two-dimensional representation of the spectral error in the image is shown in Fig.
6A.  Fig. 6B shows the ideal noise behavior of uniform variance and uncorrelated errors
(i.e., only diagonal elements of constant magnitude).  Clearly, the true error covariance
structure of the spectral image data has non-uniform diagonal variance components and
large off diagonal terms demonstrating that errors are highly correlated between
frequencies.  Thus, the errors observed from our measured spectral image data are a far
departure from the ideal behavior presented in Fig. 6B.
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Figure 4.  Examples of systematic artifacts in the spectral image scores, A) scores from
factor 5 of an interferogram, B) scores from factor 10 of the negative log of a sample
single beam, C) scores from factor 2 of two ratioed background single-beam spectra after
conversion to absorbance, and D) scores from factor 3 from same two ratioed background
single-beam spectra after conversion to absorbance.
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Figure 5.  Mean-centered repeat spectra from the neoprene pixels in the spectral image.

A BA B

Figure 6.  A) Covariance error structure of the mean-centered repeat spectra, B) Ideal
error covariance structure assumed for standard least-squares analyses.

The non-constant noise variance for infrared absorbance spectra is expected since the log
transformation required to obtain absorbance spectra takes noise variance that is expected
to be constant at all frequencies for MCT detectors and makes the noise nonuniform over
the spectral frequencies.  The expected form of the noise variance of the difference of two
repeat absorbance spectra at a single frequency can be estimated as outlined below.
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where the last term on the right-hand side of Eq. 6 assumes that the error variance is
comparable for both repeat single-beam spectra.  From Eq. 6, we see that the error
variance for the absorbance spectra is inversely proportional to the square of the single-
beam intensity for the infrared spectrum.  In a simple weighted least squares fit of the
data, the weights would be proportional to the square root of the inverse of the spectral
absorbance variance.  If experimental estimates follow the expected theory, then the
approximate proper weights would be proportional to the average single beam spectrum
obtained from the image spectra.  Fig. 7 compares the estimated weighting function for
absorbance error variance obtained from the repeat sample image differences and the
theoretical weighting function based on the average single-beam intensity obtained from
the sample image data.  Clearly, the experimental and theoretical estimates for the
weighting function are very similar demonstrating that the repeat spectral differences can
lead to reasonable estimates for the error variance of the absorbance spectral data.
Confirmation that the full covariance structure of the error is captured by the repeat
image spectral differences rests in our ability to use this information to reduce or
eliminate systematic errors during the image analysis.
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Figure 7.  The upper trace is the inverse of the square root of the variance component
from the mean-centered repeat spectra (left axis).  The lower trace is the average single-
beam spectrum of the neoprene pixels (right axis).

Conventional MCR methods were applied to the spectral image data presented in Fig. 3
using non-negativity constraints on both concentrations and pure-component spectra.
Three pure components appeared to be adequate to represent the original thermally
modified neoprene and the decomposition products.  Using more than three pure
components yielded results that were not as physically meaningful as obtained with three
components.  The normalized MCR pure-component spectra obtained with three
components are presented in Fig. 8.  The trace corresponding to component 1 is
characteristic of the thermally aged but unoxidized neoprene sample.  The component 2
trace indicates a decomposition product that contains a significant carbonyl
decomposition product.  The component 3 trace indicates that a second decomposition
product is present in the aged sample that is characterized by a hydroxyl dominated
decomposition product with very little formation of a carbonyl species.  This second
decomposition product has a different spatial profile in the sample than the first.  Note
that the high-frequency region of the pure-component spectra is quite noisy.
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Figure 8.  Estimated pure-component spectra using standard non-negativity constrained
MCR.

Pathlength-corrected relative concentration maps representing the three pure are
presented in Fig. 9.  Some of the striped artifact presented in Fig. 4 is clearly visible in at
least two of these concentration maps indicating that the MCR analyses are corrupted by
this artifact.  The carbonyl decomposition product (middle image) demonstrates a large
concentration gradient that is high at the outer edges of the sample.  The hydroxyl
component decomposition product shown on the right side of Fig. 9 is more variable and
extends somewhat beyond the region containing the carbonyl decomposition product.
The thermally aged but unoxidized neoprene on the left of Fig. 9 is present somewhat
uniformly throughout the sample although it may have been reduced near the edge of the
sample by the oxidation.  Full evaluation and interpretation of the results and
interpretation of the MCR results will be the subject of another manuscript that includes
images and evaluations from many more sample-aging conditions.  The primary purpose
of this paper is to demonstrate the power of ACLS methods coupled with MCR in
reducing the influence of system artifacts.
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Figure 9.  Concentration maps for components 1, 2, and 3, respectively obtained from the
standard non-negativity constrained MCR.

MCR was then applied to the same spectral image data with the concentration matrix
augmented by the first five sets of scores from the mean-centered repeat image spectral
differences.  The MCR was implemented with equality constraints on these five sets of
image scores.  In applying these equality constraints on the scores, we correct the
alternating least-squares generation of the pure-component spectra for the presence of
score-related concentration errors in the image data.  Fig. 10 presents the three pure-
component spectra generated from the MCR augmented with the scores.  Note that the
noise in the high-energy region of the pure-component spectra is greatly reduced in these
pure-component estimates.  More detailed structure becomes available in the OH
stretching region of the spectra (3000 – 3700 cm-1 spectral region) with score
augmentation.  The derivative nature of the hydroxyl band for the carbonyl dominated
decomposition product (component 2) may indicate some hydrogen bonding with the
hydroxyl dominated decomposition product.  Since we have not corrected the
concentrations when augmenting with scores, the concentration maps indicate essentially
no improvement in the striping artifact relative to the standard non-augmented MCR
analysis of the same data.
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Figure 10.  Estimated pure-component spectra augmenting with the first five scores from
the mean-centered repeat spectra and using non-negativity and equality constrained
MCR.

MCR was then applied to the same spectral image data the first five sets of eigenvectors
from the mean-centered repeat image spectral differences added to the pure-component
spectral matrix.  The MCR was implemented with equality constraints on these five
eigenvectors.  There is some improvement in noise of the high-energy side of the
hydroxyl-dominated pure component, but there is little, if any, improvement in the noise
on the other pure-component spectra.  However, the concentration maps exhibit dramatic
improvement in the quality.  The striping artifact is nearly completely removed when the
eigenvectors augment the MCR as shown in Fig. 11.  These improvements in
concentration maps were expected since the augmentation of the pure-component spectra
with the eigenvectors corrects the concentration estimates.  This correction of
concentrations with spectral augmentation was described in detail in our earlier paper
describing the prediction-augmented CLS (PACLS) method applied to non-image
spectral data.
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Figure 11.  Concentration maps for components 1, 2, and 3, respectively obtained
augmenting with the first five eigenvectors from the mean-centered repeat spectra and
using non-negativity and equality constrained MCR.

Finally, we tested augmenting the MCR method with both scores and eigenvectors from
the repeat image spectral differences.  In this implementation, one simply augments with
scores during the calibration phase of the MCR and augments with the eigenvectors
during the prediction phase.  Thus, at each iteration in the MCR procedure, any estimates
related to the augmented vectors are replaced with the original eigenvectors from the
PCA decomposition of the repeat image differences.  The combined augmentation with
scores and eigenvectors generates improved pure-component spectra and corrected
concentration maps.  The pure-component spectra with scores and eigenvector
augmentation are presented in Fig. 12.  These spectra have the low noise of the scores-
augmented MCR and are also slightly modified, especially in the high-energy hydroxyl
spectral region.  The concentration maps with scores and eigenvector augmented MCR
are presented in Fig. 13.  Like the eigenvector- augmented MCR concentration maps,
these images exhibit greatly reduced striping artifact.  The reduction in the artifact is
emphasized in Fig. 14, which shows the difference between the standard MCR and the
fully augmented MCR composition maps for all three components.  Clearly, a significant
reduction in the system artifact has been achieved when augmenting with estimates of the
error covariance information derived from the difference between two repeat images.



20

15002000250030003500
0

0.05

0.1

0.15

0.2

Wavenumbers (cm-1)

N
or

m
al

iz
ed

 A
bs

or
ba

nc
e

Component 1
Component 2
Component 3

Figure 12.  Estimated pure-component spectra augmenting with the first five sets of
scores and eigenvectors from the mean-centered repeat spectra and using non-negativity
and equality constrained MCR.

Figure 13.  Concentration maps for components 1, 2, and 3, respectively obtained
augmenting with the first five sets of scores and eigenvectors from the mean-centered
repeat spectra and using non-negativity and equality constrained MCR.
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Figure 14.  Differences in the concentration maps of components 1, 2, and 3, respectively
from the standard MCR and MCR augmented with the first five sets of scores and
eigenvectors from the mean-centered repeat image spectra of the neoprene pixels.

CONCLUSIONS
Significant improvements have been made in the quantitative analysis of FT-IR
hyperspectral image data.  We have demonstrated the quantitative analysis of spectral
image data without the need for calibration standards.  The standard method of applying
MCR with non-negativity constraints to spectral data has been improved with the
augmentation of the CLS calibration and prediction solutions with estimates of the error
covariance structure in the spectra.  Mean-centered repeat image spectral differences
provide an estimate of the error covariance structure in the image spectra and give the
analyst an opportunity to minimize or eliminate the influence of system artifacts on the
analysis of the image data.  The MCR with ACLS is implemented not only with non-
negativity constraints, but also with the addition of equality constraints applied to the
augmented eigenvectors and/or scores generated from mean-centered repeat image
difference spectra.  We have demonstrated with an aged neoprene sample containing
system artifacts in the image data that augmentation with scores improves the pure-
component spectral estimates while augmentation with the corresponding eigenvectors
improves primarily the relative concentration maps derived from the image data.
Augmentation with both scores and eigenvectors improves both the pure-component
spectra and the concentration maps.

Of course the best solution for eliminating the detrimental effects of system artifacts is to
identify the experimental sources of the artifacts and eliminate the artifact at its source.
Software could then be used to minimize the detrimental effects of any small residual
artifact.  However, augmenting the steps of the MCR analysis corrects for non-uniform
variance that is inherent in infrared spectral data, and therefore, ACLS methods should
always be used in the MCR analysis of infrared data.  ACLS methods will generally be
useful in the analysis of any type of spectral data where estimates of the error covariance
structure of the data can be obtained.  We are now applying MCR methods to a wide
variety of spectral data beyond hyperspectral image data.  We expect that the MCR
methods with a variety of constraints and coupled with augmentation will have
applicability to the quantitative and qualitative analysis of multivariate spectral data.
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